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An efficient method for band structure calculations in dielectric photonic crystals
is presented. The method uses a finite element discretization coupled with a pre-
conditioned subspace iteration algorithm. Numerical examples are presented which
illustrate the behavior of the method.c© 1999 Academic Press

1. INTRODUCTION

Photonic crystals are periodic structures composed of dielectric materials and designed
to exhibit interesting properties, such as spectral band gaps, in the propagation of classical
electromagnetic waves. Structures with band gaps have many potential applications, for
example, in optical communications, filters, lasers, and microwaves. See [2, 13] for an
introduction to photonic crystals. Figotin and Kuchment have proved that periodic dielectric
structures exist which exhibit band gaps [9, 10], and other band gap structures have been
found through computational and physical experiments. Computation has become a primary
tool for investigating the properties of these structures.

Carrying out a complete band structure calculation for a given photonic crystal generally
involves solving a large family of eigenproblems, as thequasimomentumparameter (defined
in the next section) is varied over the first Brillouin zone. Solving this set of eigenproblems
can be a computational burden, even for a single given photonic crystal. The computational
cost is greatly multiplied in optimal design situations, where one wishes to evaluate a large
number of structures in order to find one with some optimal property.

In this paper we describe a method which is well suited for efficient band structure
calculations in photonic crystals. Here we consider only “two-dimensional” structures. The
central building block of our approach is a subspace preconditioning method for general
symmetric eigenproblems studied by Bramble, Knyazev, and Pasciak [3]. Our method
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combines the subspace preconditioning algorithm with a simple finite element discretization
of the original family of eigenproblems, and a fast Fourier transform preconditioner. The
subspace preconditioning algorithm is an iterative method which takes a given approximate
eigen-subspace and iteratively improves it. This makes the method very efficient for solving
continuously varying families of problems, as in band structure calculations. Small changes
in the parameter generally result in small changes in the associated eigen-subspace, so that
the subspace from a previous solve can be used as an accurate estimate for the next parameter
value. Further efficiency is gained through the use of a preconditioner. Our preconditioner
is most effective for structures composed of “low-contrast” mixtures of materials. In the
optical frequency range, the contrast between the refractive indicesk1, k2 of two typical
dielectric materials is generally relatively low (sayk1/k2≤ 3). In this parameter regime, the
method is efficient enough to apply in an optimal design setting [5].

Many other methods have been developed for the computation of band structures in
photonic crystals, both 2D and 3D. Most previous methods which allow for general dielectric
structures are based on natural truncated plane wave decompositions of the fields (see, e.g.,
the survey [2] and the references therein). While acceptable accuracy can be obtained with
these methods, it is often at a large computational cost, due to the slow convergence of the
truncated field in media with sharp discontinuities. Alternative methods such as the T-matrix
and R-matrix methods have been proposed and are based on calculating a transfer matrix for
Maxwell’s equations. Such propagation methods are particularly useful for calculations in
truncated structures. A comparison of the T-matrix and R-matrix approaches can be found
in [7]. A method designed specifically for band structure calculations in certain crystal
configurations which are known to produce band gaps has been developed by Figotin and
Godin [8]. This method is highly efficient even for materials with large contrasts.

Finally, Axmann and Kuchment [1] have recently proposed a finite element method for
band structure calculations in 2D photonic crystals. Their basic approach is similar to the
method described here, but different in two main respects. First, their finite element approx-
imation scheme uses general unstructured grids, where the method presented here uses a
uniform, rectangular grid. Rectangular grids are easier to implement, but unstructured grids
generally offer a more accurate field approximation using fewer grid points. The second
main difference is the method of solution for the discrete eigenproblems. Our approach
uses a fast approximate solution operator as a preconditioner, which is embedded within the
subspace iterations, and which makes use of the fact that the grid is rectangular. Axmann and
Kuchment use a simultaneous coordinate over-relaxation method, which does not require
the use of an approximate solution operator. Each approach presents certain advantages and
disadvantages; perhaps further work will produce new methods achieving the best features
of both.

Extension of the finite element approach to the full Maxwell equations in 3D photonic
crystals is work in progress. Finite element techniques for typical 3D electromagnetics
problems in engineering are well developed [12]. Also, the efficiency of the solution methods
described here and in [1] for 2D problems is very favorable for large problems. Our hope
is that by coupling known 3D finite element discretization techniques with a fast solution
algorithm, an effective method for 3D photonic crystals will result.

The outline of the remainder of this paper is as follows. In the following section, we for-
mulate the discrete finite element problem. Then in Section 3, we introduce a fast Fourier
transform (FFT) preconditioner. In Section 4, we describe the subspace preconditioning al-
gorithm. Finally in Section 5 we numerically illustrate some of the properties of the method.
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2. PROBLEM FORMULATION

Beginning with Maxwell’s equations

∇ × E − iωµH = 0, ∇ × H + iωεE = 0, (1)

we assume that the magnetic permeabilityµ is constant, and the medium is orthotropic,
that is, the dielectric tensorε can be written

ε =
 ε11 ε12 0
ε21 ε22 0
0 0 ε33

 . (2)

We assume that all material properties are constant in thex3 direction, thatε is positive
definite, and thatε12= ε21. In the E-parallel case, where the electric field is given by
E= (0, 0, u), Eqs. (1) then reduce to

4u+ ω2ρu = 0, in R2, (3)

whereρ(x)=µε33(x), x= (x1, x2). In the H -parallel case, where the magnetic field is
given byH = (0, 0, u), Eqs. (1) reduce to

∇ · (M∇u)+ ω2u = 0, in R2, (4)

where the matrixM(x) is given by

M = 1

µ
(
ε11ε22− ε2

12

) ( ε22 −ε12

−ε12 ε11

)
. (5)

We assume that the structure has unit periodicity on a square lattice. Thus denoting
Z={0,±1,±2, . . .}, and defining the lattice3= Z2, we assume that

ε(x + n) = ε(x), for all x ∈ R2, and for alln ∈ 3.

We define the periodic domain

Ä = R2/Z2,

which can be identified with the unit square(0, 1)2 with periodic boundary conditions.
Define the first Brillouin zoneK = [−π, π ]2. To reduce the problem overR2 to a family of
problems overÄ, one defines forg∈ L2(R2) the Floquet transform

(Fg)(α, x) = e−iα·x ∑
n∈Z2

g(x − n)eiα·n, α ∈ K .

The sum can be considered as a Fourier series in thequasimomentumvariableα, with values
in L2(Ä); see [14] for details.

Formally, (∇ + iα)Fg=F(∇g), where the gradient is with respect to thex variable.
Under the mappingF , theE-parallel problem (3) transforms to

(∇ + iα) · (∇ + iα)uα + ω2ρuα = 0 inÄ,α ∈ K , (6)
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whereuα is the Floquet transform ofu. Similarly, theH -parallel problem (4) transforms to

(∇ + iα) · M(∇ + iα)uα + ω2uα = 0 inÄ,α ∈ K . (7)

For notational simplicity, from now on we drop the subscriptα when referring tou.
Let H1(Ä) denote the usual Sobolev space of square integrable functions with square

integrable first-order derivatives. The natural variational eigenproblems associated with (6)
and (7) are, respectively,

aα(1; u, v) = ω2b(ρ; u, v), for all v ∈ H1(Ä) (E-parallel) (8)

and

aα(M; u, v) = ω2b(1; u, v), for all v ∈ H1(Ä) (H -parallel), (9)

where

aα(M; u, v) =
∫
Ä

M(∇ + iα)u · (∇ + iα)v

b(ρ; u, v) =
∫
Ä

ρuv.

The quadratic formsaα andb are Hermitian.
Discrete versions of the variational problems (8), (9) are then obtained in the standard

way by introducing for a given “discretization level”N, an approximating subspaceSN ⊂
H1(Ä). Problem (8) is then replaced by the discrete problem: find nonzerouN ∈ SN andω2

such that

aα(1; uN, φ) = ω2b(ρ; uN, φ), for all φ ∈ SN, (10)

and similarly for theH -parallel polarization case (9).
In our implementation, due to the simple geometry of the domainÄ, and our wish

to maintain as much symmetry as possible in the discrete problem, we chooseSN to be
composed of piecewise-bilinear nodal finite elements on a uniform

√
N×√N square grid.

Convergence properties for finite element approximations for similar elliptic eigenvalue
problems are well known, see, for example, [4]. For both problems (8) and (9), the finite
element approximations are convergent, assuming only thatε is bounded, measurable, and
uniformly bounded away from zero. However, for problem (8), the convergence is generally
faster, essentially due the the better smoothness properties of eigenvectorsu. Our focus here
is not on the convergence of the discrete approximationsuN as N→∞, although some
numerical examples are given in Subsection 5.2.

Given the standard set of nodal basis elements{φ j }Nj=1⊂ SN , we write (10) as a matrix
eigenproblem

AE
α u = ω2BEu (E-parallel), (11)

where the entries of the matrices are given by(
AE
α

)
jk
= aα(1;φ j , φk), (BE) jk = b(ρ;φ j , φk), 1≤ j, k ≤ N,
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and nowu is a vector representing the approximate eigenfunction in terms of the basis{φ j }.
The matrix problem corresponding to theH -parallel case (9) will be written

AH
α u = ω2BH u (H -parallel), (12)

where (
AH
α

)
jk
= aα(M;φ j , φk), (BH ) jk = b(1;φ j , φk), 1≤ j, k ≤ N.

In our implementation, the integralsb(ρ;φ j , φk) andaα(M;φ j , φk) are calculated ex-
plicitly by assuming thatρ andM are piecewise constant over the grid.

3. PRECONDITIONER

Due to the periodic geometry, the differential operator

Lα = −(∇ + iα) · (∇ + iα) = −4− 2iα · ∇ + |α|2

is easily separable in terms of Fourier coefficients. Specifically, writing

f (x) =
∑
n∈3

fne2π in·x, where fn =
∫
Ä

f (x)e−2π in·x dx,

we see that

Lα f =
∑
n∈3
|2πn+ α|2 fne2π in·x, (13)

where the sum is interpreted in a weak sense if necessary. Note that forα ∈ K = [−π, π ]2,
the term|2πn+α| is zero only whenn=α= 0. Consequently, one has an explicit repre-
sentation for the inverse (modulo constants in theα= 0 case),

L−1
α f =

∑
n∈3

2πn+α 6=0

|2πn+ α|−2 fne2π in·x. (14)

Our approach uses this representation to obtain a preconditioner, i.e., an approximate
inverse, for the finite element discretization described in the previous section. In the discrete
setting, an approximation toL−1

α can be calculated very efficiently using the fast Fourier
transform. Specifically, ifF denotes the FFT operation on a sampled grid function on a√

N×√N uniform grid, we can define

Sα = F−1DαF,

whereDα is a diagonal scaling matrix with entries|2πn+ α|−2 on the diagonal.Sα can be
viewed as a discrete approximation toL−1

α . SinceSα is not constructed in the same finite
element space as the matrixAE

α , it will not be an exact matrix inverse. For our purposes,Sα
will be used only as anapproximateinverse for the matrixAE

α (as well as forAH
α ). Notice

that calculating the productSαv, for anyN-vectorv, is aO(N log N) operation.
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4. SUBSPACE PRECONDITIONING ALGORITHM

The algorithm we propose for solving the matrix eigenvalue problems (11) and (12)
is a trivial modification of a method studied by Bramble, Pasciak, and Knyazev [3] (the
modification is to handle generalized eigenproblems). The idea of using preconditioned
iterations for computing eigenvalues is not new, dating back at least to Samokish [16] and
Petryshyn [15]. Convergence analysis in the case of one eigenvalue was done by Godunov
et al. [11]. The basic iteration used here was studied by D’yakonov and Orekhov [6]. In
addition, several alternative preconditioned schemes have since been proposed to further
enhance the convergence of the basic iteration; see the references in [3] for details.

Let us denote problems (11) and (12) generically by

Aαu = λBu.

The preconditioned subspace iteration algorithm is intended to find a relatively small num-
ber, says, of the smallest eigenvalues in large-dimensional symmetric positive definite
matrix problems. The basic method develops a sequence of approximating eigenspaces

Vn
s = span{v1, . . . , vs}, n = 1, 2, . . . .

Applied to our band structure calculation problem, the method proceeds as follows. First,
choose an initial subspaceV0

s . A space spanned bys pseudo-random, linearly independent
N-vectors usually suffices. Next, forn= 0, 1, 2, . . . , perform the iteration:

(1) Compute the Ritz eigenvectors{vn
j }sj=1⊂Vn

s , and their corresponding eigenvalues
λn

1 ≤ λn
2 ≤ · · · ≤ λn

s satisfying〈
Aαv

n
j , w

〉 = λn
j

〈
Bvn

j , w
〉
, for all w ∈ Vn

s .

(2) Compute

v̂n+1
j = vn

j − Sα
(

Aαv
n
j − λn

j Bv
n
j

)
, for j = 1, . . . , s.

(3) DefineVn+1
s = span

{
v̂n+1

1 , . . . , v̂n+1
s

}
.

Most of the work in each iteration is expended computing the matrix-vector products
Aαvn

j , Bvn
j , j = 1, . . . , s. With the finite element discretization described Section 2,Aα and

B essentially have only nine nonzero diagonals, so each matrix-vector product is anO(N)
operation. Computing the action of the preconditionerSα on a vector is anO(N log N)
operation. Thus withs fixed, each iteration of steps (1)–(3) requiresO(N log N) time. It is
important to note that the Ritz eigenproblem in step (1) iss-dimensional, so that for smalls
(typically s≈ 10), this is a trivial amount of work. The iteration (1)–(3) can be terminated,
for example, when maxj {|λn

j − λn+1
j |} is less than some desired tolerance.

Estimates which, under certain assumptions on the preconditioner, prove that the subspace
iteration converges at a rate which isindependent of the grid sizeare provided in [3]. In
the next section we will investigate numerically some of the convergence properties of the
algorithm.

To do a full band structure calculation, one can now proceed in the obvious way, sampling
quasimomentum vectorsα in the first Brillouin zone with a finite number ofαk, and solving
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each eigenproblem with the algorithm above, onek at a time. In practice, by choosing
the sequence{αk} so that each distance|αk−αk+1| is small, one gets a good approximate
subspaceV0

s for the(k+ 1)st problem by using the final subspaceVn
s from thekth problem.

Typically after the first problem is solved, each additional problem requires only a few
subspace preconditioning iterations.

5. NUMERICAL EXPERIMENTS

Our goal in this section is to illustrate the performance of the method for typical 2D
photonic crystals. The method was implemented entirely inMatlab; computations were
carried out on a Sun UltraSparc workstation. We begin this section by presenting two
simple band structure calculations.

5.1. EXAMPLES. A typical band structure calculation proceeds by computing the first
s eigenvalues for various values ofα, asα is varied along lines between points of high
symmetry in the first Brillouin zone, as shown in Fig. 1. Alternatively, a density of states
calculation can be done by sampling many values ofα in the first Brillouin zone and counting
corresponding states in specified frequency ranges. A simple band calculation example is
shown in Fig. 2. In this example, the photonic crystal is an array of circular isotropic rods, as
pictured in Fig. 2a. The rods have high dielectric constant (ε= 8.9) and are surrounded by
air (ε= 1). Band structures inE- andH -parallel polarization modes are shown in Figs. 2b
and 2c, respectively. The computations were carried out on a 64× 64 grid and required
roughly a half-hour of wall-clock time.

In the next example, we consider anisotropic media. As is well known, this situation
arises naturally when considering “layered” composite structures, such as the one pictured
in Fig. 3a. Such structures would of course be of most interest at larger-than-optical length
scales, where fabrication is more plausible. In the figure, light areas represent an isotropic
material withε= 17 and dark areas represent an isotropic material withε= 1. One could
of course retain the isotropic problem and compute directly with the structure in Fig. 3a.
However, if one wishes to increase the number of layers in each “slab” while holding its

FIG. 1. First Brillouin zone and symmetry points0, X, andM .
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FIG. 2. Computed band structure for circular dielectric rod of radius 0.378, where the cell side length is one.
(a) Four cells of circular rod structure. Light-shaded area representsε= 8.9; dark area hasε= 1. (b) E-parallel
polarization. (c)H -parallel polarization.

thickness fixed, then the grid must be refined, which can become a computational burden.
By instead passing to the limit as the number of layers becomes infinite and applying effec-
tive media theory, one obtains an orthotropic problem. In the effective orthotropic problem,
each vertical slab becomes a homogeneous composite material with

ε =
9 0 0

0 17
9 0

0 0 9

 .
Similarly, each horizontal slab is homogeneous, withε as above, but withε11 and ε22

reversed. The band structure corresponding to this effective media model was calculated on
a 64× 64 grid and is shown in Figs. 3b and 3c. It was found to differ very little from the band
structure obtained by direct computation on the layered isotropic model with a finer grid.

5.2. Convergence of finite element approximations.In the E-parallel case, standard
convergence estimates (see, e.g., [4]) indicate that finite element solutions, using piece-
wise bilinear elements as in our implementation, are linearly convergent to exact solutions
as the grid spacing is reduced. A numerical check of this estimate is shown in Fig. 5,
where we plot the maximum difference between the first five eigenvalues, computed on
m×m and m

2 × m
2 grids. This check is carried out on two different photonic crystals: the
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FIG. 3. Computed band structure for (anisotropic) effective medium limit of layered structure. Note that gaps
appear in bothE- andH -parallel modes. (a) Four cells of layered structure. Light-shaded area representsε= 17;
dark area hasε= 1. (b) E-parallel polarization. (c)H -parallel polarization.

first is the circular dielectric rod structure shown in Fig. 2a, and the second is a sim-
ilar dielectric rod structure with a square cross section and side length 0.5, shown in
Fig. 4. The computational results are consistent with linear convergence in both cases,
and also agree with the type of convergence behavior observed by Axmann and Kuchment

FIG. 4. Square rod structure used for convergence checks. Rod side length is 0.5, dielectric coefficient in rod
(shaded light) isε= 8.9, and surrounding medium isε= 1.
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FIG. 5. Maximum difference in first five computed eigenvalues maxj |λm
j − λm/2

j |, whereλm
j is the j th eigen-

value computed on anm×m grid, versus linear grid sizem. Circles indicateE-parallel mode; crosses indicate
H -parallel mode. (a) Circular dielectric rod structure. (b) Square dielectric rod structure.

[1]. In H -parallel polarization, it can be proved that the finite element approximation is
convergent, but for arbitraryε(x) one cannot expect a definite convergence rate. In Fig. 5a
we see that convergence inH -parallel mode appears to be less than linear for the circular
dielectric rod structure. Some improvement could be obtained by implementing more ac-
curate integration rules; recall from Section 2 that in our implementation, the matrix entries
(12) are calculated assuming a piecewise constant dielectric coefficient. For structures in
which jumps in the dielectric coefficient are aligned with the computational grid, as in the
square rod example, the integration rules are exact and the grid conforms naturally with the
regularity of the eigenfunctions. Consequently, convergence is better, as shown in Fig. 5b.

5.3. Convergence of subspace iterations.In practice, the number of preconditioned
subspace iterations required to reach a given tolerance in maxj {|λn

j − λn+1
j |} is at worst a
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very slowly growing function of the grid sizeN. This is difficult to check numerically,
because a primary factor determining the number of iterations required on a subspace of a
given dimensions is the distance between the largest eigenvalueλs within the subspace and
the smallest eigenvalueλs+1 outside the subspace. AsN is varied, this distance generally
changes. However, for simple examples chosen such that|λs−λs+1| is relatively insensitive
to N, we can get a qualitative idea of the general behavior. For a series of computations
in which the first three bands inE-parallel polarization of the square rod structure shown
in Fig. 4 were calculated to a stopping tolerance of maxj {|λn

j − λn+1
j |}< 5 × 10−6, the

average number of subspace iterations per solve grows monotonically, but slowly, from 5.7
iterations forN= 256 to 6.1 iterations atN= 16384. Furthermore, as illustrated in Fig. 6a,
the amount of work required for the complete band calculation (measured in number of

FIG. 6. Number of floating point operations versus grid sizeN. Circles represent average number of operations
per solve. Crosses represent average number of operations per preconditioned subspace iteration. (a)E-parallel
polarization example. (b)H -parallel polarization example.
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floating point operations) scales roughly likeN log N, the same as a single preconditioned
subspace iteration.

The preconditioner is generally not as effective in theH -parallel polarization case as it is
in E-parallel polarization. Hence each solve requires more subspace iterations. In a series of
computations similar to the last example, but inH -parallel polarization, the average number
of subspace iterations per solve was larger, but actually decreased monotonically from 26.1
iterations per solve atN= 256, to 24.1 iterations per solve atN= 16384. Average work
per solve and per step increased “almost” linearly withN, as illustrated in Fig. 6b.

A key factor determining the effectiveness of the preconditioner is the contrast between
dielectric coefficients of the materials which compose the photonic crystal. Generally, the
preconditioner works better for small contrast. The effect of the preconditioner on conver-
gence of the subspace iteration is complicated, but can be examined qualitatively by looking

FIG. 7. The quantityγ (λ), defined in (15), forλ = 0, 1
3
, 2

3
, 1. The horizontal axis represents the contrast in

material parameters for the isotropic dielectric rod structure in Fig. 2. (a)E-parallel polarization. (b)H -parallel
polarization.
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at the step

v̂n+1
j = vn

j − Sα
(

Aαv
n
j − λn

j Bv
n
j

)
.

Roughly speaking, if the quantity

γ (λ) = ‖Sα(Aα − λB)‖, (15)

is small, then the update to the approximate eigenvector ˆvn+1
j is small, and the iteration

converges more rapidly. The behavior ofγ (λ) is different forE- andH -parallel modes, but
always increases with the contrast. Figure 7 shows various values ofγ (λ) as the contrast
of the dielectric rod structure is increased fromε= 1 to ε= 20. Obviously theE-parallel
mode behaves better in the optical contrast rangeε≈ 9. This helps explain the improved
convergence we observed inE-parallel mode in the numerical examples. Note however that
the H -parallel mode appears to have better asymptotic behavior for large contrast.

6. CONCLUSIONS

We have presented an efficient method for performing band structure calculations in
“two-dimensional” photonic crystals. The method uses a finite element discretization cou-
pled with a preconditioned subspace iteration algorithm to solve the discrete eigenprob-
lems. The method can be applied to very general dielectric structures, including those with
anisotropic media. The method is most efficient for photonic crystals composed of low-
contrast media. Numerical experiments indicate that the computational work required per
solve isO(N log N), where N is the number of points in the discretization. The basic
approach can in principle be extended to handle three-dimensional structures, and more
general periodic geometries.
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