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An efficient method for band structure calculations in dielectric photonic crystals
is presented. The method uses a finite element discretization coupled with a pre-
conditioned subspace iteration algorithm. Numerical examples are presented which
illustrate the behavior of the methodg 1999 Academic Press

1. INTRODUCTION

Photonic crystals are periodic structures composed of dielectric materials and desic
to exhibit interesting properties, such as spectral band gaps, in the propagation of clas
electromagnetic waves. Structures with band gaps have many potential applications
example, in optical communications, filters, lasers, and microwaves. See [2, 13] for
introduction to photonic crystals. Figotin and Kuchment have proved that periodic dielec
structures exist which exhibit band gaps [9, 10], and other band gap structures have |
found through computational and physical experiments. Computation has become a prir
tool for investigating the properties of these structures.

Carrying out a complete band structure calculation for a given photonic crystal gener
involves solving a large family of eigenproblems, asghasimomentuiparameter (defined
in the next section) is varied over the first Brillouin zone. Solving this set of eigenproblel
can be a computational burden, even for a single given photonic crystal. The computati
cost is greatly multiplied in optimal design situations, where one wishes to evaluate a |z
number of structures in order to find one with some optimal property.

In this paper we describe a method which is well suited for efficient band structt
calculations in photonic crystals. Here we consider only “two-dimensional” structures. T
central building block of our approach is a subspace preconditioning method for gen:
symmetric eigenproblems studied by Bramble, Knyazev, and Pasciak [3]. Our metl
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combines the subspace preconditioning algorithm with a simple finite element discretiza
of the original family of eigenproblems, and a fast Fourier transform preconditioner. T
subspace preconditioning algorithm is an iterative method which takes a given approxin
eigen-subspace and iteratively improves it. This makes the method very efficient for sol
continuously varying families of problems, as in band structure calculations. Small chan
in the parameter generally result in small changes in the associated eigen-subspace, s
the subspace from a previous solve can be used as an accurate estimate for the next par:
value. Further efficiency is gained through the use of a preconditioner. Our preconditio
is most effective for structures composed of “low-contrast” mixtures of materials. In tl
optical frequency range, the contrast between the refractive inkicds of two typical
dielectric materials is generally relatively low (day k. < 3). In this parameter regime, the
method is efficient enough to apply in an optimal design setting [5].

Many other methods have been developed for the computation of band structure
photonic crystals, both 2D and 3D. Most previous methods which allow for general dielec
structures are based on natural truncated plane wave decompositions of the fields (see
the survey [2] and the references therein). While acceptable accuracy can be obtained
these methods, it is often at a large computational cost, due to the slow convergence o
truncated field in media with sharp discontinuities. Alternative methods such as the T-ma
and R-matrix methods have been proposed and are based on calculating a transfer mati
Maxwell’s equations. Such propagation methods are particularly useful for calculations
truncated structures. A comparison of the T-matrix and R-matrix approaches can be fo
in [7]. A method designed specifically for band structure calculations in certain crys
configurations which are known to produce band gaps has been developed by Figotin
Godin [8]. This method is highly efficient even for materials with large contrasts.

Finally, Axmann and Kuchment [1] have recently proposed a finite element method
band structure calculations in 2D photonic crystals. Their basic approach is similar to
method described here, but different in two main respects. First, their finite element app!
imation scheme uses general unstructured grids, where the method presented here
uniform, rectangular grid. Rectangular grids are easier to implement, but unstructured g
generally offer a more accurate field approximation using fewer grid points. The sect
main difference is the method of solution for the discrete eigenproblems. Our appro
uses a fast approximate solution operator as a preconditioner, which is embedded withil
subspace iterations, and which makes use of the fact that the grid is rectangular. Axmanr
Kuchment use a simultaneous coordinate over-relaxation method, which does not rec
the use of an approximate solution operator. Each approach presents certain advantage
disadvantages; perhaps further work will produce new methods achieving the best feat
of both.

Extension of the finite element approach to the full Maxwell equations in 3D photor
crystals is work in progress. Finite element techniques for typical 3D electromagne
problemsin engineering are well developed [12]. Also, the efficiency of the solution methc
described here and in [1] for 2D problems is very favorable for large problems. Our hc
is that by coupling known 3D finite element discretization techniques with a fast soluti
algorithm, an effective method for 3D photonic crystals will result.

The outline of the remainder of this paper is as follows. In the following section, we fo
mulate the discrete finite element problem. Then in Section 3, we introduce a fast Fou
transform (FFT) preconditioner. In Section 4, we describe the subspace preconditionin
gorithm. Finally in Section 5 we numerically illustrate some of the properties of the methc
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2. PROBLEM FORMULATION
Beginning with Maxwell's equations
Vx E—iouH =0, VxH+iweE =0, 1)

we assume that the magnetic permeabilitys constant, and the medium is orthotropic,
that is, the dielectric tensercan be written

€11 €12 0
e=|e1 €2 0 |. (2)
0 0 €33

We assume that all material properties are constant ixjtdirection, thate is positive
definite, and thak;, =¢51. In the E-parallel case, where the electric field is given by
E =(0, 0, u), Egs. (1) then reduce to

AU+ w?pu=0, inR? (3)

where p(X) = uesz(X), X = (X1, X2). In the H-parallel case, where the magnetic field is
given byH = (0, 0, u), Egs. (1) reduce to

V- (MVU)+0?u=0, inR? (4)

where the matridM (x) is given by
1 _
M=ot < €22 612) . 5)
p(ern€er —€2,) \ —€12  en

We assume that the structure has unit periodicity on a square lattice. Thus denc
Z=1{0, £1, £2, ...}, and defining the lattic&. = Z?, we assume that

e(x+n)=e(x), forallx e R? andforallne A.
We define the periodic domain
Q =R?/7?,

which can be identified with the unit squaf@ 1)? with periodic boundary conditions.
Define the first Brillouin zon& =[—x, 7]2. To reduce the problem ov&? to a family of
problems ovek?, one defines fog € L2(R?) the Floquet transform

(FOa.x) =%y " gx —me*",  aeK.

nez?

The sum can be considered as a Fourier series iutasimomentuvariablex, with values
in L2(R); see [14] for details.

Formally, (V +ia)Fg=F(VQg), where the gradient is with respect to thevariable.
Under the mapping-, the E-parallel problem (3) transforms to

(V4+ia) (V+io)uy +w’puy, =0 inQ,aekK, (6)



366 DAVID C. DOBSON

whereu, is the Floguet transform af. Similarly, theH -parallel problem (4) transforms to
(V+ia)-M(V+io)u, + 0’u, =0 inQ,aekK. (7

For notational simplicity, from now on we drop the subscapthen referring tau.

Let H1(Q) denote the usual Sobolev space of square integrable functions with squ
integrable first-order derivatives. The natural variational eigenproblems associated witt
and (7) are, respectively,

a.(L; u,v) = w?b(p; u,v), forallve HY(Q) (E-parallel) (8)
and
a,(M:u,v) = w?b(1;u,v), forallve HY(Q) (H-parallel), 9)

where
a,(M; u,v) :/ MV +ia)u- (V+ia)v
Q

b(p; u,v) = / puv.
Q

The quadratic forms,, andb are Hermitian.

Discrete versions of the variational problems (8), (9) are then obtained in the stand
way by introducing for a given “discretization levelll, an approximating subspa&g C
H(2). Problem (8) is then replaced by the discrete problem: find nonggeSy andw?
such that

a,(L1; U, ¢) = w?b(p; un, ¢),  forall¢ e Sy, (10)

and similarly for theH-parallel polarization case (9).

In our implementation, due to the simple geometry of the don§airand our wish
to maintain as much symmetry as possible in the discrete problem, we cBgdsebe
composed of piecewise-bilinear nodal finite elements on a unifdhinx +/N square grid.
Convergence properties for finite element approximations for similar elliptic eigenval
problems are well known, see, for example, [4]. For both problems (8) and (9), the fir
element approximations are convergent, assuming only isdtounded, measurable, and
uniformly bounded away from zero. However, for problem (8), the convergence is gener:
faster, essentially due the the better smoothness properties of eigenue€iargocus here
is not on the convergence of the discrete approximatignas N — oo, although some
numerical examples are given in Subsection 5.2.

Given the standard set of nodal basis eIem@:yﬁl}:ss}“:1 C Su, we write (10) as a matrix
eigenproblem

Afu=w?BEu  (E-parallel) (11)
where the entries of the matrices are given by

(AD) =L d0,  (BHjk=bpi¢j, ¢, 1=<j k=N,
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and nowu is a vector representing the approximate eigenfunction in terms of the{basis
The matrix problem corresponding to thieparallel case (9) will be written

Au=w?B"u  (H-parallel) (12)
where
(AD) g =aM: g ), Bj=blLigjd), 1=<jk=N.

In our implementation, the integralp; ¢;, ¢x) anda,(M; ¢;, ¢x) are calculated ex-
plicitly by assuming thap andM are piecewise constant over the grid.

3. PRECONDITIONER

Due to the periodic geometry, the differential operator
Le=—(V+ia) - (V+ia)=—-A—2ia-V+|af

is easily separable in terms of Fourier coefficients. Specifically, writing

f(x) = Z f.e? " wheref, = / f (x)e~ 21N dx,
Q

neA

we see that

L,f = Z|2nn+a|2fne2’””'x, (13)

neA

where the sum is interpreted in a weak sense if necessary. Note that #r=[—, 7],

the term|2zn 4+ «| is zero only whem =« = 0. Consequently, one has an explicit repre-
sentation for the inverse (modulo constants indhe0 case),

L= D 1270+ a2 fe? ™ (14)

o

neA
2rn+a#0

Our approach uses this representation to obtain a preconditioner, i.e., an approxir
inverse, for the finite element discretization described in the previous section. In the disc
setting, an approximation tb;* can be calculated very efficiently using the fast Fourie
transform. Specifically, ifF denotes the FFT operation on a sampled grid function on
VN x +/N uniform grid, we can define

S = F!D,F,

whereD, is a diagonal scaling matrix with entrié&rn + «| =2 on the diagonalS, can be
viewed as a discrete approximationltgt. SincesS, is not constructed in the same finite
element space as the matA¥%, it will not be an exact matrix inverse. For our purpos&s,
will be used only as aapproximatenverse for the matriAF (as well as forA'!). Notice
that calculating the produ@&, v, for any N-vectorv, is aO(N log N) operation.
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4. SUBSPACE PRECONDITIONING ALGORITHM

The algorithm we propose for solving the matrix eigenvalue problems (11) and (1
is a trivial modification of a method studied by Bramble, Pasciak, and Knyazev [3] (t
modification is to handle generalized eigenproblems). The idea of using preconditiol
iterations for computing eigenvalues is not new, dating back at least to Samokish [16]
Petryshyn [15]. Convergence analysis in the case of one eigenvalue was done by God
et al. [11]. The basic iteration used here was studied by D’yakonov and Orekhov [6].
addition, several alternative preconditioned schemes have since been proposed to fu
enhance the convergence of the basic iteration; see the references in [3] for details.

Let us denote problems (11) and (12) generically by

A.u = ABu.

The preconditioned subspace iteration algorithm is intended to find a relatively small n
ber, says, of the smallest eigenvalues in large-dimensional symmetric positive defin
matrix problems. The basic method develops a sequence of approximating eigenspac

VI = sparfuy, . . ., vs}, n=12....

Applied to our band structure calculation problem, the method proceeds as follows. Fi
choose an initial subspad€. A space spanned Igpseudo-random, linearly independent
N-vectors usually suffices. Next, far=0, 1, 2, . . ., perform the iteration:

(1) Compute the Ritz eigenvectqraﬁ‘}?=1 C V{, and their corresponding eigenvalues
Al < A5 < ... <Al satisfying

(Av], w) = A"(Bv], w),  forallw e V.

(2) Compute

ﬁ?+1:v?—sy(Aau?—xTBv?), forj=1,...,s.

(3) DefineV*! = spar{d]*, ..., 501,

Most of the work in each iteration is expended computing the matrix-vector produc
Aav?, Bv?, i =1,...,s. With the finite element discretization described SectioA2and
B essentially have only nine nonzero diagonals, so each matrix-vector produsdig\gn
operation. Computing the action of the preconditioBgron a vector is arQ(N log N)
operation. Thus witls fixed, each iteration of steps (1)—(3) requit@eN log N) time. Itis
important to note that the Ritz eigenproblem in step (5)démensional, so that for small
(typically s~ 10), this is a trivial amount of work. The iteration (1)—(3) can be terminatec
for example, when mepm’j‘ — AT+1|} is less than some desired tolerance.

Estimates which, under certain assumptions on the preconditioner, prove thatthe subs
iteration converges at a rate whichimslependent of the grid sizze provided in [3]. In
the next section we will investigate numerically some of the convergence properties of
algorithm.

To do afull band structure calculation, one can now proceed in the obvious way, samp
guasimomentum vectossin the first Brillouin zone with a finite number af, and solving
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each eigenproblem with the algorithm above, dnat a time. In practice, by choosing
the sequencéx} so that each distandey — ax1] is small, one gets a good approximate
subspac&? for the (k + 1)st problem by using the final subspaégfrom thekth problem.
Typically after the first problem is solved, each additional problem requires only a fe
subspace preconditioning iterations.

5. NUMERICAL EXPERIMENTS

Our goal in this section is to illustrate the performance of the method for typical 2
photonic crystals. The method was implemented entirelilatlab; computations were
carried out on a Sun UltraSparc workstation. We begin this section by presenting f
simple band structure calculations.

5.1. ExamMPLES. A typical band structure calculation proceeds by computing the fir
s eigenvalues for various values @f asa is varied along lines between points of high
symmetry in the first Brillouin zone, as shown in Fig. 1. Alternatively, a density of stat
calculation can be done by sampling many valuesiafthe first Brillouin zone and counting
corresponding states in specified frequency ranges. A simple band calculation examp
shown in Fig. 2. In this example, the photonic crystal is an array of circular isotropic rods.
pictured in Fig. 2a. The rods have high dielectric constast 8.9) and are surrounded by
air (¢ =1). Band structures it- and H-parallel polarization modes are shown in Figs. 2kt
and 2c, respectively. The computations were carried out on>a@#grid and required
roughly a half-hour of wall-clock time.

In the next example, we consider anisotropic media. As is well known, this situati
arises naturally when considering “layered” composite structures, such as the one pict
in Fig. 3a. Such structures would of course be of most interest at larger-than-optical ler
scales, where fabrication is more plausible. In the figure, light areas represent an isotr
material withe =17 and dark areas represent an isotropic material swttl. One could
of course retain the isotropic problem and compute directly with the structure in Fig. -
However, if one wishes to increase the number of layers in each “slab” while holding

a2

a1

=
>

FIG. 1. First Brillouin zone and symmetry poing X, andM.
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FIG. 2. Computed band structure for circular dielectric rod of radius 0.378, where the cell side length is o
(a) Four cells of circular rod structure. Light-shaded area represeat9; dark area has= 1. (b) E-parallel
polarization. (c)H -parallel polarization.

thickness fixed, then the grid must be refined, which can become a computational bur
By instead passing to the limit as the number of layers becomes infinite and applying ef
tive media theory, one obtains an orthotropic problem. In the effective orthotropic proble
each vertical slab becomes a homogeneous composite material with

m

1
oo ©
ooj o

0
0
9

Similarly, each horizontal slab is homogeneous, withs above, but witke1; and ex;

reversed. The band structure corresponding to this effective media model was calculate
a64x 64 grid and is shown in Figs. 3b and 3c. It was found to differ very little from the bar
structure obtained by direct computation on the layered isotropic model with a finer gri

5.2. Convergence of finite element approximations.the E-parallel case, standard
convergence estimates (see, e.g., [4]) indicate that finite element solutions, using pi
wise bilinear elements as in our implementation, are linearly convergent to exact soluti
as the grid spacing is reduced. A numerical check of this estimate is shown in Fig.
where we plot the maximum difference between the first five eigenvalues, computed
mxmand? x 7 grids. This check is carried out on two different photonic crystals: th
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FIG.3. Computed band structure for (anisotropic) effective medium limit of layered structure. Note that gz

appear in botte- andH-parallel modes. (a) Four cells of layered structure. Light-shaded area represehts
dark area has = 1. (b) E-parallel polarization. (cH -parallel polarization.

first is the circular dielectric rod structure shown in Fig. 2a, and the second is a si
ilar dielectric rod structure with a square cross section and side lengthsBown in

Fig. 4. The computational results are consistent with linear convergence in both ca
and also agree with the type of convergence behavior observed by Axmann and Kuchr

FIG. 4. Square rod structure used for convergence checks. Rod side length is 0.5, dielectric coefficient ir
(shaded light) i = 8.9, and surrounding mediumés=1.
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FIG. 5. Maximum difference in first five computed eigenvalues paR — AT/2|, whereAT is the jth eigen-

value computed on am x m grid, versus linear grid sizm. Circles indicateE-parallel mode; crosses indicate
H-parallel mode. (a) Circular dielectric rod structure. (b) Square dielectric rod structure.

[1]. In H-parallel polarization, it can be proved that the finite element approximation
convergent, but for arbitrarg(x) one cannot expect a definite convergence rate. In Fig. -
we see that convergence irparallel mode appears to be less than linear for the circulz
dielectric rod structure. Some improvement could be obtained by implementing more
curate integration rules; recall from Section 2 that in our implementation, the matrix entr
(12) are calculated assuming a piecewise constant dielectric coefficient. For structure
which jumps in the dielectric coefficient are aligned with the computational grid, as in tl
square rod example, the integration rules are exact and the grid conforms naturally witt
regularity of the eigenfunctions. Consequently, convergence is better, as shown in Fig.

5.3. Convergence of subspace iterations practice, the number of preconditioned
subspace iterations required to reach a given tolerance im{mﬁx— A?+1|} is at worst a
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very slowly growing function of the grid sizdl. This is difficult to check numerically,
because a primary factor determining the number of iterations required on a subspace
given dimensiors is the distance between the largest eigenvalueithin the subspace and
the smallest eigenvalue,, ; outside the subspace. At is varied, this distance generally
changes. However, for simple examples chosen suchithatis, 1] is relatively insensitive

to N, we can get a qualitative idea of the general behavior. For a series of computati
in which the first three bands iB-parallel polarization of the square rod structure showi
in Fig. 4 were calculated to a stopping tolerance of p{uab? —AT+1|} <5 x 1078, the
average number of subspace iterations per solve grows monotonically, but slowly, ffom
iterations forN = 256 to 61 iterations alN = 16384. Furthermore, as illustrated in Fig. 6a,
the amount of work required for the complete band calculation (measured in numbe

107+

T

FIG.6. Number of floating point operations versus grid SizeCircles represent average number of operations
per solve. Crosses represent average number of operations per preconditioned subspace iteEaiamalla)
polarization example. (bl -parallel polarization example.
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floating point operations) scales roughly likdog N, the same as a single preconditioned
subspace iteration.

The preconditioner is generally not as effective in thgarallel polarization case asitis
in E-parallel polarization. Hence each solve requires more subspace iterations. In a seri
computations similar to the last example, buHrparallel polarization, the average number
of subspace iterations per solve was larger, but actually decreased monotonically ffom
iterations per solve all =256, to 241 iterations per solve dfl = 16384. Average work
per solve and per step increased “almost” linearly Withas illustrated in Fig. 6b.

A key factor determining the effectiveness of the preconditioner is the contrast betwe
dielectric coefficients of the materials which compose the photonic crystal. Generally,
preconditioner works better for small contrast. The effect of the preconditioner on conv
gence of the subspace iteration is complicated, but can be examined qualitatively by lool

3.4 T T

32 4

35

251

FIG. 7. The quantityy (1), defined in (15), foi. = 0, % g 1. The horizontal axis represents the contrast in
material parameters for the isotropic dielectric rod structure in Fig. ZE{pdrallel polarization. (bH-parallel
polarization.
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at the step

~ntl _
v? = v? — S),(AO,UE1 —A?Bv?).

Roughly speaking, if the quantity
Y = 1S(Ac = 2B, (15)

is small, then the update to the approximate eigenvef.‘jtbjr i5 small, and the iteration
converges more rapidly. The behavionaf.) is different forE- andH -parallel modes, but
always increases with the contrast. Figure 7 shows various values\.pfas the contrast
of the dielectric rod structure is increased frem: 1 to € = 20. Obviously theE-parallel
mode behaves better in the optical contrast range. This helps explain the improved
convergence we observedtparallel mode in the numerical examples. Note however the
the H-parallel mode appears to have better asymptotic behavior for large contrast.

6. CONCLUSIONS

We have presented an efficient method for performing band structure calculation:
“two-dimensional” photonic crystals. The method uses a finite element discretization ¢
pled with a preconditioned subspace iteration algorithm to solve the discrete eigenpl
lems. The method can be applied to very general dielectric structures, including those
anisotropic media. The method is most efficient for photonic crystals composed of Ic
contrast media. Numerical experiments indicate that the computational work required
solve isO(NlogN), whereN is the number of points in the discretization. The basi
approach can in principle be extended to handle three-dimensional structures, and 1
general periodic geometries.
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